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Adaptive Resonance Theory-based neural algorithms for manufacturing

process quality control

M. PACELLAy*, Q. SEMERAROz and A. ANGLANIy

The demand for quality products in industry is continuously increasing. To pro-
duce products with consistent quality, manufacturing systems need to be closely
monitored for any unnatural deviation in the state of the process. Neural net-
works are potential tools that can be used to improve the analysis of manu-
facturing processes. Indeed, neural networks have been applied successfully for
detecting groups of predictable unnatural patterns in the quality measurements of
manufacturing processes. The feasibility of using Adaptive Resonance Theory
(ART) to implement an automatic on-line quality control method is investigated.
The aim is to analyse the performance of the ART neural network as a means for
recognizing any structural change in the state of the process when predictable
unnatural patterns are not available for training. To reach such a goal, a simpli-
fied ART neural algorithm is discussed then studied by means of extensive Monte
Carlo simulation. Comparisons between the performances of the proposed neural
approach and those of well-known SPC charts are also presented. Results prove
that the proposed neural network is a useful alternative to the existing control
schemes.

1. Introduction

In any production process, a certain amount of variability exists in the measure-
ments of quality parameters. Two sources of variation may affect such measure-
ments: commonly they are referred to as unassignable and assignable causes
(Montgomery 2000). The variation due to unassignable causes is the result of numer-
ous unremarkable changes that may occur in the process. This kind of variation is to
some extent inevitable without a profound revision of the production procedure.
When only unassignable causes are in effect, a process is considered to be in a natural
state (i.e. in control). On the other hand, the variation due to assignable causes is
produced by factors that lie outside the process. New methods and different
machines introduced into the system, or changes in the measurement instruments
and in the turnover of labour force, are common examples of assignable causes. In
such cases, the process is said to be in an unnatural state (i.e. out of control), and
quality improvement is possible by detection and removal of the assignable causes.

Statistical Process Control (SPC) is a methodology based on several techniques
that is aimed at monitoring variability in the measurements of quality parameters.
Control charts are the most widely applied SPC tools used to reveal unnatural
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variations in the monitored measurements. They are based on the idea that if
a process is in a natural state, then the series of quality measurements are predictable
according to a specific statistical model.

Nowadays, with the movement towards computer-integrated manufacturing,
the automation of SPC implementation is considered essential. In relatively recent
years, artificial neural networks have been used for quality control applications
(Zorriassantine and Tannock 1998). A neural network is a computer algorithm
with the ability to learn a specific knowledge, to adapt it to new situations, and to
provide reliable classifications and approximations of data (Haykin 1999). Neural
networks learn a specific knowledge by iterating through a set of exemplar data.
Learning can take place through internal clustering (self-organizing or competitive
learning) or through paired training sets (supervised learning). A supervised
approach, which requires user to prespecify the desired output, can be used for
data modelling when calibrated training data are available.

Since supervised neural networks are capable of recalling learned patterns from
noisy or incomplete representations, they were extensively exploited for control chart
pattern recognition. Hwarng and Hubele (1993a, b) carried out extensive studies on
control chart pattern recognition by training a back-propagation network (BPN) in
order to detect predictable unnatural patterns. Cheng (1997) used modular neural
networks to deal with higher noise-to-signal ratios in control chart pattern recog-
nition. Guh and Tannock (1999) proposed a neural network model to recognize
concurrent patterns (where more than one pattern exists together, which may be
associated with different assignable causes). Guh and Hsieh (1999) presented a
control system composed of several interconnected BPNs both to recognize the
unnatural control chart patterns and to estimate their parameters. Perry et al. (2001)
implemented two BPNs to detect unnatural patterns on control charts as specified by
Western Electric (1956).

The results of such methodologies are promising, and the implementation of
supervised neural networks for control chart pattern recognition has been shown
to be successful in all these studies. However, reported approaches have assumed
that the output class always corresponded with one (or more) of the predictable
patterns, thus failing to identify unexpected patterns that might arise. To obtain
an adequate number of training examples that mimic the series of quality measure-
ments generated by the process in an unnatural state, an implicit assumption of the
above approaches is that the group of unnatural patterns are known in advance.
In actual cases, unnatural process outputs could not be manifested by the appear-
ance of predictable patterns. Therefore, sufficient training examples of unnatural
outputs may not be readily available.

The present paper proposes a different neural network approach for process
monitoring. The aim is to develop a complementary neural-based approach to the
existing methodologies that is capable of enhancing the effectiveness of quality
control when no prior knowledge of the unnatural patterns is available for training.
In particular, the proposed approach is based on the Adaptive Resonance Theory
(ART) neural network as a means for recognizing any structural change in the state
of a process. The monitoring procedure proposed can be useful when starting
processing of new products, or with a new installed process.

The paper is structured as follows. In Section 2, the ART is briefly presented.
In Section 3, the ART-based approach is illustrated. In Section 4, the operating phases
of the proposed neural network for quality control are discussed. A simulation
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methodology is presented in Section 5, while experimental results and comparisons
between neural network performances and those of well-known SPC benchmarks are
provided in Section 6. Section 7 has conclusions and discusses some directions for
further research. Finally, analytical and computational results on neural network
performances are given in appendices A and B.

2. Adaptive Resonance Theory (ART) for quality control

ART has been introduced as a mathematical model for the description of biolog-
ical brain functions such as learning, memory and pattern recognition (Hagan et al.
1996). This theory has led to an evolving series of neural network models, which
includes ART1 (binary input), ART2 and Fuzzy ART (analogue input). An ART-
based neural network can be used to cluster arbitrary data into groups with similar
features. It operates by summarizing similar data into categories that are formed
during training in a self-organizing manner. For further details, see Hagan et al.
(1996).

An ART-based neural network was first exploited for quality control by Hwarng
and Chong (1995). They used an ART1 network to implement a control chart
pattern recognizer, which had a fast and cumulative training phase. The ART1
network was trained in a ‘quasi-supervised’ approach for identifying six predictable
unnatural patterns (trends, stratification, cycles, systematic, mixture and shift).

Al-Ghanim (1997) exploited an ART1 network differently. The author did not
develop a pattern recognizer, but a system for signalling any change in the structure
of a process, i.e. a generic unnatural behaviour. A change in structure can also be
manifested in the form of predictable unnatural patterns and, therefore, a detected
change may result from a cycle, mixture, systematic or any other pattern. However,
the detection of a specific unnatural pattern was not considered since for any input
the output from Al-Ghanim’s neural system indicated whether the process was in
a natural or an unnatural state.

More specifically, the ART1 neural network was trained on a set of data pro-
duced by the process in a state of control (i.e. patterns of natural data). During this
training phase, the network clusters natural patterns into groups with similar fea-
tures, and when it is confronted by a new input, it produces a response that indicates
which cluster the pattern belongs to (if any). After the training, the neural network
can provide an indication that a structural change in process outputs has occurred
when the current input does not fit to any of the learned natural clusters. The goal
was to exploit an unsupervised neural system that autonomously identified the
different structures of clusters in the process output, and that, through a calibration
schema, provided the capability to recognize the state of the process (either natural
or unnatural). The calibration of network outputs, based on knowledge of input
classes, was used in order to obtain the correct classification of a few numbers of
input patterns as in any supervised system.

Although the work of Al-Ghanim represented a remarkable new use of neural
networks for quality control, the author found that his pioneering methodology did
not have the same degree of sensitivity as is possible using supervised procedures.
Similarly, our preliminary studies have demonstrated that while the ART1 network
can be applied to detect high changes of the process mean, it cannot identify medium
and small changes, e.g. less than two standard deviation (SD) units. This drawback
can be mainly ascribed to the binary coding of the ART1 algorithm. Indeed, binary

4583ART-based neural algorithms for manufacturing process quality control



format of input data are a less flexible way of using process outputs than a method
based on graded continuous number encoding.

Our research aims to extend the methodology proposed by Al-Ghanim as well as
to improve the performances of an ART-based neural network for quality control.
A new simplified ART algorithm (the Fuzzy ART), which does not require binary
coding of input data, is investigated for quality control applications. Fuzzy ART is
based on the fuzzy set theory operations, thus input values, as well as weights of the
network links, can range only between zero and 1. This network is composed of two
major subsystems: attentional and orienting. While in the former familiar patterns
are processed, the latter resets the neural activity whenever an unfamiliar input
pattern is submitted.

There are many desirable properties of learning and characteristics associated
with a Fuzzy ART neural network. First, Fuzzy ART is capable of learning in both
off-line (batch) and on-line (incremental) training modes. In addition, due to the
nature of its neural model, responses of Fuzzy ART to input vectors can be easily
explained, in contrast to other neural network models, where in general it is more
difficult to explain why an input pattern produces a specific output. For properties of
learning for Fuzzy ART, see Huang et al. (1995), Georgiopoulos et al. (1996, 1999)
and Anagnostopoulos and Georgiopoulos (2002).

3. Outline of the proposed Fuzzy ART algorithm

By process monitoring, we mean the use of a control system that can cyclically
check the desired stable state of the process. Assume that at time t the process quality
characteristic is measured with reference to a constant nominal value �. Denote
by {Yt}¼ {Y1,Y2, . . .} the time series of the quality characteristic measurements
obeying the model:

Yt ¼ �þ Zt þ St, ð1Þ

where {Zt} is a time series of random deviations with zero mean, which models the
natural variation of process output data due to unassignable causes, and {St} is
an arbitrary disturbance time series that models the unnatural variation due to
assignable causes.

The goal is to develop a neural network to signal any changes of the structure of
a process. The output of the system is not intended to provide a classification of
the disturbance signal {St}, but merely an out-of-control signal when testing the null
hypothesis H0 :Yt¼� þ Zt (the process is in control) against the alternative hypo-
thesis H1 :Yt¼� þ Zt þ St (the process is out of control). As with every statistical
test, errors of Type I (some action is taken although the process is in control, i.e.
false alarm) and Type II (no action is taken although the process is out of control)
can occur.

The proposed neural system for quality control and the reference process model
are jointly shown in figure 1. At the time of index t, the control system accepts
as input the quality measurement Yt and produces the binary response bt. The
algorithm produces bt¼ 1 if at time of index t no change in the structure of process
has been detected (H0), bt¼ 0 otherwise (H1).

As shown in figure 1, some pre-processing stages of input data take place before
they are presented to the Fuzzy ART network. The first pre-processing stage is called
Window Forming. It transforms the temporal series {Yt} of process data into
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M-dimensional vectors. Let Y t be the output of the Window Forming stage, the

implemented pre-processing stage is as follows:

Y t ¼ Yt�Mþ1,Yt�Mþ2, . . . ,Yt�1,Yt

� �
t � M: ð2Þ

Specifically, the most recent M observations are collected to form the neural net-

work input vector. In the most diffused literature, parameter M is referred

to as the Window Size of the approach. The need to arrange the series of quality

measurements as M-dimensional vectors implies that the system provides no indica-

tion on the process state during the first M� 1 time intervals. Nevertheless, since a

single-step moving window is used, once the first M data are collected, a new M-

dimensional input vector for the neural network can be implemented whenever a new

quality measurement becomes available.

The second pre-processing stage takes as input anM-dimensional input vector Y t

and transforms it into the corresponding M-dimensional output vector (say I t)

whose components fall into the interval [0, 1]. This pre-processing stage is called

Coding and it consists of a linear rescaling of input variables into the range [0, 1].

Coding is necessary as the Fuzzy ART network can only accept input ranging

between zero and 1. Let l>0 be an appropriate limit for the natural absolute

variation of the quality characteristic measurements {Yt} from the nominal value

�, the Coding stage can be summarized as follows:

I t ¼ It�Mþ1, It�Mþ2, . . . , It�1, It
� �

�

I� ¼ 0 Y� � �� l;

I� ¼
1
2
1þ Y���

l

� �
�� l < Y� < �þ l;

I� ¼ 1 �þ l � Y�;

8<
: t�M þ 1 � � � t

ð3Þ

+
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Figure 1. Proposed neural system for quality control.
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The parameter l>0 is a proper saturation limit for the deviations of the quality
measurement from the process nominal value. Assuming that quality measurements
of the process in a natural state are normally distributed, with zero mean and
constant SD, �, then l¼ 3� can be used for Coding. In this case, about 99.74% of
the natural observations are expected to fall into the interval [�� l,� þ l].

The Fuzzy ART neural network implemented in this work is shown in figure 2.
It consists of two major subsystems: attentional and orienting. Three fields of nodes
denoted as F0, F1 and F 2 compose the attentional subsystem. The F0 layer contains
M neurones. The number of nodes in the F1 field is equal to 2M, while the number of
neurones in the F2 layer is equal to (or greater than) the number of clusters formed
in the training phase. On the other hand, the orienting subsystem consists of a single
node called the reset node. The output of the reset node, which depends on the
vigilance parameter �, affects the nodes in the F2 layer.

In the F0 field, an additional pre-processing stage on the incoming input vectors
I t ¼ It�Mþ1, It�Mþ2, . . . , It�1, It

� �
is implemented. This pre-processing stage, called

Complement Coding, accepts an M-dimensional vector I t and produces the following
2M-dimensional output vector I ct (where 1 is the all-one M-dimensional vector):

I ct ¼ I t, 1� I t
� �

¼ It�Mþ1, It�Mþ2, . . . , It, 1� It�Mþ1, 1� It�Mþ2, . . . , 1� It
� �

: ð4Þ

Every node of index j in the F2 field is connected via a top-down weight with every
node in the F1 field. The vector whose components are equal to the top-down
weights emanating from node j in the F2 field is designated by wj. An additional
layer was included into the implemented neural network: it consists of a single node
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Figure 2. Proposed Fuzzy ART neural network.
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that provides the output binary signal bt of the quality control system. The proposed
neural network was implemented by means of the NeuralWorks Professional II Plus
software environment (NeuralWare 1997).

4. Operating phases of the proposed quality control system

4.1. Configuration phase (choice of parameter M)
As already mentioned, the Window Forming stage implies that the neural net-

work cannot release a signal before the first M quality measurements have been
collected. Thus, if the monitored process were in an unnatural state due to an
incorrect set up operation, at least M� 1 out-of-control outputs could be produced
before a signal is emitted by the neural network. Consequently, large window sizes
can increase scrap and rework costs. On the other hand, window size can affect
the recognition performance of the neural network. The larger the window size,
the better the capability of the neural network in recognizing changes in the structure
of the process. Since large window sizes can raise the efficiency in signalling changes
of the process structure, the choice of M should be determined according to the
minimum magnitude that is important to recognize, in the sense that a lower
magnitude requires higher window sizes. A strategy for setting the window size is
as follows.

. Identify the minimum variation of the process mean, which it is important to
recognize quickly (say ’ in terms of SD units).

. Choose the window size M as a function of ’. Usually, a smaller ’ requires a
higher window size; a rule of thumb is to choose Mffim/’ (m¼ 75 is the
recommended value).

4.2. Training phase
In the proposed approach, the neural network is trained on the process nominal

value �. A single M-dimensional vector whose components are equal to the process
nominal value forms the training list. Let Y� ¼ �,�, . . . ,�½ � be the training
M-dimensional vector resulting from Window Coding. Let I c� be the 2M-
dimensional training vector that results from the sequence of Coding and Comple-
ment Coding stages applied on Y� (each component of the vector I c� is equal to 0.5).

First, all the top-down weights of the neural network are initialized to 1, and all
the nodes of the F2 layer are uncommitted as they are not assigned to any template.
The appearance of the vector I c� across the F1 field produces bottom-up inputs that
affect the nodes in the F2 layer. One of the uncommitted nodes of the F2 layer is then
selected to represent the I c� training vector, and the corresponding 2M-dimensional
top-down weight vector (say wc

�) is set equal to wc
� ¼ I c� no matter which values

are taken by the vigilance parameter. Note that I c� ¼ I�, 1� I�
� �

, where I� is an
M-dimensional vector, hence wc

� ¼ w�, 1� w�

� �
, where w� is an M-dimensional

vector. The training stops when the wc
� template is formed, i.e. when the vector I c�

is memorized into the ideal template wc
�. As a result, the neural network forms

a single category (one committed node in the F2 layer), which matches the training
vector wc

� ¼ I c�.
Once this category has been produced, the learning process ends because no

further training vectors are used. Note too that the vigilance parameter, choice
parameter and learning rate of the ART network (Hagan et al. 1996) do not
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influence training, as once the ideal cluster has been formed (first iteration) no more
iterations are implemented. In other words, no further choice of F2 nodes (affected
by the choice parameter), weights adjustment (affected by the learning rate) or reset
of a committed node (affected by the vigilance parameter) are allowed.

This training represents the least supervised approach practically possible by
using a single training vector. Therefore, the neural network can be used in a detec-
tion mode as follows. When the training is completed and a new vector is presented
to the network, it can be either accepted as a natural input that resembles the learned
natural template (no alarm is signalled by the network) or rejected otherwise (an
alarm is emitted by the network). Detecting whether an input vector resembles the
ideal template is the function of the matching algorithm. An input vector will be
classified as unnatural if it does not match the ideal template.

4.3. Matching algorithm
To discuss the matching algorithm, some preliminary notations must be intro-

duced. The size of a vector x is defined as jxj ¼
P

i jxij. The minimum between
vectors x and y is defined as x ^ y ¼ min x1, y1ð Þ, . . . , min xi, yið Þ, . . .½ �, while the
maximum is defined as x _ y ¼ max x1, y1ð Þ, . . . , max xi, yið Þ, . . .½ �. In addition, the
distance between x and y vectors is defined as disðx, yÞ ¼ jx _ yj � jx ^ yj.

Assume that at time of index t�M, an M-dimensional input vector I t is pre-
sented at the F0 field of the ART neural network trained on the process nominal
value. The appearance of the 2M-dimensional vector I ct across the F1 field produces
the activation of the single committed node in the F2 layer of the network (whose
top-down weights vector is denoted by wc

�). The appropriateness of the natural
template wc

� to represent the input vector I ct is checked by comparing the ratio of
equation (5) with the vigilance parameter � (0 � � � 1).

jI ct ^ wc
�j

jI ct j
: ð5Þ

If such ratio is not less than the vigilance parameter �, the current input is classified
as natural (i.e. no change in the structure of the process has been recognized), and
the output is set to bt¼ 1. Otherwise, the output is bt¼ 0, which indicates that current
input is considered unnatural (i.e. a change in the process structure has been recog-
nized).

Since jI ct j ¼ M and jI ct ^ wc
�j ¼ jðI t, 1� I tÞ ^ ðw�, 1� w�Þj ¼ jI t ^ w�j þM�

jI t _ w�j, i.e. jI
c
t ^ wc

�j ¼ M � disðI t,w�Þ, the matching algorithm implies that an
input vector is classified natural if the following condition is passed:

jI ct ^ wc
�j

jI ct j
� � , disðI t,w�Þ � Mð1� �Þ: ð6Þ

The matching algorithm can be reformulated as follows:

. Calculate the distance between the current input and the single natural tem-
plate that represents the process nominal value, i.e. disðI t,w�Þ ¼ jI t _ w�j�

jI t ^ w�j.
. If such distance is greater thanM(1� �), then the input is classified as unnatural

and the output is set to bt¼ 0.
. Otherwise, the output is set to bt¼ 1.
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Since one template has been formed during training, when the learning is disengaged,
there exists no competition among alternative committed nodes. Thus, the choice
parameter of the ART network has no influence on the matching algorithm
(Georgiopoulos et al. 1996).

4.4. Tuning phase (choice of the parameter �)
The criterion of equation (6) is parametrically affected by the vigilance

� (0� �� 1). In the tuning phase, learning is disengaged (i.e. no more weight adapta-
tions or cluster creations are allowed) and vectors from a tuning list are presented to
the neural network in order to check the performance of different settings of the
vigilance parameter. The tuning vectors are examples of natural data patterns, which
are obtained using either a series of real process data (measurements of the quality
parameter of interest when only unassignable causes of variation are in effect), or a
series of simulated data. In any case, only a set of natural data is needed in order to
select a proper value for the vigilance parameter.

On one hand, real patterns of data can be available when the process starts in
a state of natural operation and remains in this state for a given time interval. Such
a hypothesis is not unusual in quality control, as it resembles the designing phase
of a statistic-based control chart (i.e. the positioning of the control limits) for a new
starting process.

On the other hand, a mathematical model of the in-control process state can be
formulated; hence, it can be exploited to simulate vectors of natural data. The natural
variation component {Zt} of equation (1) can be realistically modelled by a random
time series whose values are normal, independent and identically distributed (NID)
over time, with mean zero and a known constant �. Without loss of generality, it can
be assumed �¼ 1, i.e. Zt�NID(0, 1). This model has been adopted here in order to
simulate the tuning list of natural data as it gives a close approximation to many types
of practical manufacturing processes. The simulation model was implemented by
means of the Matlab environment (MathWorks 1991) because of the availability of
an efficient pseudo-random number generator (Vattulainen et al. 1995).

The value of the vigilance parameter � is chosen to maintain the false alarm rate
(Type I error) about equal to a predefined value. This serves to provide an unbiased
comparison of neural network performance to any traditional charting technique
when the process drifts to unnatural states (Type II error rates). Under fixed Type I
error rate, the Type II error should be as small as possible in order to signal any
mean changes in the process as quickly as possible.

Note from equation (6) that a higher vigilance imposes a stricter matching cri-
terion to the natural template learned in training phase (this results in higher false
alarm rates �); on the contrary, a lower vigilance tolerates greater mismatches (this
results in lower false alarm rates �). In other words, there exists a monotonically
increasing relation between � and �. Thus, when natural process data are either
available or they can be simulated, the vigilance parameter can be tuned (off-line)
through a straightforward ‘trial-and-error’ approach (higher vigilance parameters
� causes higher Type I error rates � and vice versa lower vigilance parameters
� causes lower Type I error rates �). The objective is to assess the Type I error for
different trial values of the vigilance parameter (by using the same neural network).
This approach is quite common in quality control. As an example, it resembles the
designing phase of a statistic-based control chart (e.g. the choice of parameter h for
a CUSUM control chart). In addition, this approach has been exploited by several
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neural-network-based procedures that have appeared in the recent literature for
monitoring process mean shift (Cheng and Cheng 2001, Wang and Chen 2002,
Hwarng 2004). In such procedures, one parameter of the neural network is empiri-
cally tuned to obtain a predefined performance with the monitoring system, which is
usually the Type I error rate, i.e. the average run length for an in-control process.

In actual applications, given a set of natural data, a computer program can be
used to estimate iteratively Type I error rates � produced by the ART network for
several vigilance parameters �. For example, a binary search method, which itera-
tively divides the space of admissible values for � (i.e. the interval of real numbers
between 0 and 1) in subintervals of length 1

2

� �iteration number
, can be used to find an

appropriate vigilance that allows for a specific Type I error rate.
Appendix A provides some analytical results on the relationship between neural

network performance and vigilance parameter. Appendix B presents computational
results on the effect of Type I and II error rates when the vigilance parameter and
window size are altered.

5. Performance analysis

The implementation of the proposed neural-based approach requires no knowl-
edge of the unnatural patterns. However, to estimate the neural system performances
in signalling different changes of the process structure, unnatural process data were
simulated. For performance evaluation purposes, simulation with equation (1) was
used to generate vectors of unnatural data. When the process starts drifting from the
natural state, a special disturbance signal {St} overlaps the series of process output
measurements. For performance evaluation purposes, the following four disturbance
models of magnitude ’ were considered.

Systematic variation:

St ¼ ’ð�1Þt: ð7Þ

Cyclic: let � be the period, the model is as follows:

St ¼ ’ cos
2�t

�

� �
: ð8Þ

Shift: let � be the instant of shifting. A shift is modelled by:

St ¼
0 t < �
’ t � �

�
: ð9Þ

Mixture:

St ¼ ’mt; mt 2 �1, 1f g, ð10Þ

wheremt is the status of a binary (�1, 1) Markov’s chain at time of index t andm1¼ 1
is the initial state. Let pc¼P{mt 6¼mt�1|mt�1} and P{mt¼mt�1|mt�1}¼ 1� pc.

The proposed neural network parallels statistical hypothesis testing and its prop-
erties can be fully described in terms of Type I and II error rates. In a simulation-
based test, the rate of the Type I errors (i.e. the sample mean of the alarm signals,
say �̂�) occurring in process data having only common sources of variation (natural
state) is a point estimator of the parameter �¼P{H1|H0}, i.e. the expected prob-
ability that the control system signals an alarm when the process is in control.
Similarly, the rate of the Type II errors (i.e. the non-alarm signals) occurring in
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the process data when a special disturbance, with a specific magnitude has been
introduced (say �̂�) is a point estimator of the parameter �¼P{H0|H1}, i.e. the
expected probability that the control system signals no alarms although the process
is actually out of control. Obviously, �̂� depends on the special disturbance signal
used to simulate a specific unnatural behaviour. Generally, the objective of any
quality control system is to recognize changes of the process parameters as fast as
possible (few Type II errors), without too many false alarms (few Type I errors).

The method of batch means has been used in this research to estimate the Type I
and II errors as well as their variability (Kleinjnen and Van Groenendaal 1992).
For the simulation tests presented below, 50 batches of 2000 data were used. Such
a simulation methodology has been chosen to satisfy the following two criterions:
(1) independence of the batch means by passing a test for correlation at lag 1; and
(2) widths of the Type I and II error interval estimators (with coverage of 95%)
less than 3%.

6. Experimental results

This section is focused on the neural network performances in signalling changes
of the process structure. The Type II error rates of the ART neural network were
experimentally estimated in signalling simulated changes of moderate and medium
magnitudes (i.e. 0.25, 0.50, 1.00, 1.50 and 2.00 SD units) and then they were
compared with the performances presented by a few SPC benchmarks.

The performance evaluation procedure of the ART neural network involved the
following steps:

. Configuration phase. An ART neural network of window size equal to M¼ 75
was implemented. A neural network of parameter M¼ 75 was chosen for
performance evaluation purposes because the window size should be large
enough to enable accurate capability in signalling alarms when changes of
a moderate magnitude (e.g. �1 SD unit) occur in the process. Therefore, the
neural network, implemented in NeuralWorks Professional II Plus, consisted
of 75 neurones in the F0 layer, 150 neurones in field F1 and a single node in
the F 2 layer.

. Training phase. The implemented ART neural network was trained on the
process nominal value �¼ 0, i.e. the training list consisted of the single vector
Y� with 75 components equal to zero.

. Tuning phase. To compare the implemented neural network with any tradi-
tional charting technique, it is required that performances must be identical
when the process is in a natural state (Type I error rates). This serves to
provide an unbiased comparison when the process drifts to unnatural states
(Type II error rates). Therefore, the vigilance parameter � of the implemented
ART neural network was in turn adjusted to give a comparable performance
in terms of the Type I error rate (�̂�nn) with that of a predefined SPC benchmark
(�̂�cc). In particular, the neural network was used to recognize 50 streams of
2000 simulated in-control data normally distributed with zero mean and
�¼ 1.

. Performance analysis. A sequence of simulated process data was presented
to the network in a moving window of 75 data, which was incremented
forward by one process measurement, representing a single sampling interval.
Each window of 75 data formed an input vector to the network. Comparisons
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of the neural network performances with those of a control chart bench-
mark were based on Type II error rates, which were experimentally estimated
by introducing four controlled disturbance signals (systematic variation,
cyclic �¼ 4, shift �¼ 1 and mixture pc¼ 0.4) at different magnitudes
(0.25, 0.50, 1.00, 1.50 and 2.00). For each disturbance signal and each magni-
tude setting, a Type II error point and interval estimators were assessed on 50
sets of 2000 independent simulation runs.

The following SPC benchmarks were selected:

. Bilateral cumulative summation (CUSUM) control chart of parameters
k¼ 0.5 and h¼ 4.7749 (Montgomery 2000). The estimated Type I error
rate was �̂�cc ¼ 0:269%. The vigilance parameter of the implemented
neural network that allows one to obtain a comparable Type I error rate is
�¼ 0.8475.

. Control chart with one run rule: two of three points beyond the control
limit � 1.9307 (Klein 2000). The estimated Type I error rate was �̂�cc ¼

0:281%. The same vigilance parameter �¼ 0.8475 can be chosen for this
comparison.

. Shewhart control chart with Western Electric (1956) run rules. The estimated
Type I error rate was �̂�cc ¼ 1:115%. The setting of the vigilance parameter that
allows one to obtain a comparable Type I error rate is �¼ 0.8575.

. Shewhart control chart with Western Electric (1956) run rules and four addi-
tional sensitizing rules (Nelson 1984). The estimated Type I error rate was
�̂�cc ¼ 1:617%. The setting of the vigilance parameter that allows one to obtain
a comparable Type I error rate is �¼ 0.8610.

For the comparison to be unbiased, the alarms of a control chart occurred during
the first M�1 observations were neglected, and the performances were estimated
for time indexes t�M. Numerical results and comparisons are discussed in the
following sections for each SPC benchmark.

6.1. CUSUM control chart
Table 1 compares Type I and II errors of the CUSUM schema k¼ 0.5 and

h¼ 4.7749 (Type I error �̂�cc ¼ 0:269%) with those of the ART neural network
with vigilance parameter �¼ 0.8475 (Type I error �̂�nn ¼ 0:262%). The CUSUM
parameters k and h were set optimally for signalling a shift of 1 SD in the mean
with a false alarm rate about equal to that of the standard Shewhart 3-sigma
control chart (0.27%).

To confirm the statistical significance of the difference between neural network
and control chart performance, the t-based confidence intervals (coverage 95%)
have been also presented in table 1. Specifically, the confidence interval of the dif-
ference between the neural network and control chart Type I errors (�̂�nn�

�̂�cc ¼ � 0:007%) is [� 0.053%, 0.039%]. Such a result shows that the neural network
is comparable with the CUSUM chart in terms of false alarms as the confidence
interval includes the zero (i.e. there is no statistical evidence to reject the hypothesis
�nn¼ �cc).

The columns marked as �̂�nn � �̂�cc give the difference between the Type II error
point estimators. The lower limit of the t-based confidence interval is in the column
labelled ð�̂�nn � �̂�ccÞ�, and the upper limit is in the column labelled ð�̂�nn � �̂�ccÞþ .
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CUSUM Fuzzy ART
k¼ 0.5 M¼ 75

h¼ 4.7749 �¼ 0.8475 Comparison neural network versus control chart

Natural �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.269% 0.262% �0.053% �0.007% 0.039%

Systematic variation �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.25 99.709% 99.485% �0.284% �0.224% �0.164%
0.50 99.668% 97.479% �2.323% �2.189% �2.055%
1.00 99.487% 1.825% �98.058% �97.662% �97.266%
1.50 99.158% 0.000% �99.225% �99.158% �99.091%
2.00 98.424% 0.000% �98.508% �98.424% �98.340%

Cyclic �¼ 4
0.25 99.721% 99.630% �0.145% �0.091% �0.037%
0.50 99.689% 99.130% �0.630% �0.559% �0.488%
1.00 99.523% 84.549% �15.667% �14.974% �14.281%
1.50 99.234% 0.859% �98.607% �98.375% �98.143%
2.00 98.603% 0.000% �98.688% �98.603% �98.518%

Shift �¼ 1
0.25 99.034% 99.491% 0.381% 0.457% 0.533%
0.50 92.474% 97.486% 4.639% 5.012% 5.385%
1.00 0.019% 2.092% 1.622% 2.073% 2.524%
1.50 0.000% 0.000% 0.000% 0.000% 0.000%
2.00 0.000% 0.000% 0.000% 0.000% 0.000%

Mixture pc¼ 0.4
0.25 99.618% 99.482% �0.196% �0.136% �0.076%
0.50 99.136% 97.511% �1.799% �1.625% �1.451%
1.00 95.527% 2.318% �93.699% �93.209% �92.719%
1.50 82.168% 0.000% �82.548% �82.168% �81.788%
2.00 51.802% 0.000% �52.413% �51.802% �51.191%

Table 1. Comparison between a neural network and a CUSUM control chart (simulation results, 50 sets of 2000 data).
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It appears that the neural network performance is better (i.e. smaller Type II errors)
than that of the CUSUM chart for systematic, cyclic and mixture, no matter which
magnitude is considered (0.25, 0.50, 1.00, 1.50 and 2.00). Indeed, the confidence
intervals on the difference between �nn and �cc include only negative values and
thus we can statistically conclude that �nn<�cc for each of the above tests. For
example, to signal an unnatural change in the process, which is simulated by
a systematic variation of magnitude equal to ’¼ 1.00, the ART neural network
presents a Type II error rate of about �̂�nn ¼ 1:825% versus �̂�cc ¼ 99:487% of the
CUSUM chart. In the case of a cyclic variation of the same magnitude, the
neural network has a worse performance (�̂�nn ¼ 84:549%); nevertheless, it still
outperforms the CUSUM chart (�̂�cc ¼ 99:523%).

On the other hand, the neural network has a slightly worse performance if
compared with the CUSUM chart (i.e. higher Type II errors) for shifts of 0.25,
0.50 and 1.00 SD units. For higher shifts (1.50 and 2.00 SD units), the neural network
performance and that of the CUSUM chart are similar.

Table 1 shows that the CUSUM test performs very poorly in signalling alarms
when systematic variations, cycles or mixtures overlap the series of quality measure-
ments, while it performs better for mean shifts. This means that the CUSUM schema
cannot be adopted as the sole tool for signalling a generic modification in the state
of the process. On the other hand, the ART neural network appears able to recog-
nize different kinds of change with the same capability. More specifically, note that
the neural network performances in tackling systematic variations, shifts and
mixtures are approximately the same for each level of magnitude, while for cycles
the performances are slightly worse.

The comparison results can be practically generalized as follows. While the
CUSUM chart can signal only a particular unnatural kind of variation (i.e. a con-
stant shift), the ART neural network can extend the recognition ability to a wide set
of potential unnatural changes of the process structure. Therefore, from the above
comparison, it is fair to conclude that the proposed neural algorithm has better
discriminatory capability to recognize unnatural changes of the process state that
CUSUM charts cannot address.

6.2. Control chart with one run rule
Table 2 compares the performances of a control chart with one run rule (Klein

2000) with those of the neural network previously analysed (�¼ 0.8475). The run
rule proposed by Klein is as follows: an alarm signal is released when at least two
of three consecutive points exceed the � 1.9307-sigma limits from the nominal value.
The advantage of using one rule is that appropriate upper and lower control limits
can be easily found so that the Type I error rate is equal to about 0.27%, the same
value as that of the standard Shewhart control chart.

The results in table 2 show that the neural network is comparable with the SPC
chart in terms of Type I error rates. Moreover, it appears that the neural network
performances are better (i.e. smaller Type II errors) than those of the SPC chart for
systematic, cyclic, shift and mixture disturbances, no matter which magnitude level
has been considered (0.25, 0.50, 1.00, 1.50 and 2.00).

The results prove that the neural-based procedure achieves slight improvements
over Klein’s control schema when tackling changes of the process structure of small
magnitude (0.25 and 0.50). On the other hand, the proposed neural system achieves
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Control Chart Fuzzy ART
2/3 M¼ 75

�1.9307 �¼ 0.8475 Comparison neural network versus control chart

Natural �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.281% 0.262% �0.063% �0.019% 0.025%

Systematic variation �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.25 99.609% 99.485% �0.182% �0.124% �0.066%
0.50 99.349% 97.479% �2.009% �1.870% �1.731%
1.00 97.173% 1.825% �95.754% �95.348% �94.942%
1.50 91.161% 0.000% �91.333% �91.161% �90.989%
2.00 78.476% 0.000% �78.741% �78.476% �78.211%

Cyclic �¼ 4
0.25 99.699% 99.630% �0.121% �0.069% �0.017%
0.50 99.659% 99.130% �0.604% �0.529% �0.454%
1.00 99.448% 84.549% �15.592% �14.899% �14.206%
1.50 99.029% 0.859% �98.404% �98.170% �97.936%
2.00 98.438% 0.000% �98.508% �98.438% �98.368%

Shift �¼ 1
0.25 99.574% 99.491% �0.146% �0.083% �0.020%
0.50 98.964% 97.486% �1.631% �1.478% �1.325%
1.00 95.210% 2.092% �93.583% �93.118% �92.653%
1.50 84.668% 0.000% �84.945% �84.668% �84.391%
2.00 61.975% 0.000% �62.308% �61.975% �61.642%

Mixture pc¼ 0.4
0.25 99.635% 99.482% �0.213% �0.153% �0.093%
0.50 99.308% 97.511% �1.968% �1.797% �1.626%
1.00 97.104% 2.318% �95.259% �94.786% �94.313%
1.50 90.103% 0.000% �90.275% �90.103% �89.931%
2.00 74.827% 0.000% �75.189% �74.827% �74.465%

Table 2. Comparison between a neural network and a control chart with Klein (2000) run rule (simulation results, 50 sets of 2000 data).
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Shewhart
WE RRs

Fuzzy ART
M¼ 75

�¼ 0.8575 Comparison neural network versus control chart

Natural �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
1.115% 1.058% �0.154% �0.057% 0.040%

Systematic variation �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.25 98.723% 98.157% �0.698% �0.566% �0.434%
0.50 98.407% 90.994% �7.904% �7.413% �6.922%
1.00 95.635% 0.141% �95.644% �95.494% �95.344%
1.50 87.731% 0.000% �87.901% �87.731% �87.561%
2.00 72.220% 0.000% �72.536% �72.220% �71.904%

Cyclic �¼ 4
0.25 98.867% 98.627% �0.349% �0.240% �0.131%
0.50 98.693% 96.873% �2.017% �1.820% �1.623%
1.00 97.785% 49.005% �50.089% �48.780% �47.471%
1.50 95.198% 0.037% �95.283% �95.161% �95.039%
2.00 89.905% 0.000% �90.094% �89.905% �89.716%

Shift �¼ 1
0.25 98.143% 98.160% �0.125% 0.017% 0.159%
0.50 95.704% 90.686% �5.462% �5.018% �4.574%
1.00 80.820% 0.190% �80.965% �80.630% �80.295%
1.50 42.902% 0.000% �43.427% �42.902% �42.377%
2.00 8.335% 0.000% �8.609% �8.335% �8.061%

Mixture pc¼ 0.4
0.25 98.651% 98.108% �0.674% �0.543% �0.412%
0.50 97.790% 90.963% �7.310% �6.827% �6.344%
1.00 93.260% 0.111% �93.318% �93.149% �92.980%
1.50 80.829% 0.000% �81.090% �80.829% �80.568%
2.00 58.286% 0.000% �58.657% �58.286% �57.915%

Table 3. Comparison between a neural network and a Shewhart control chart with standard Western Electric (1956) run rules (simulation results,
50 sets of 2000 data).
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significant improvements over Klein’s control performances for the other change
magnitudes (1.00, 1.50 and 2.00).

6.3. Shewhart control chart with Western Electric run rules
Table 3 compares Type I and II errors of the Shewhart chart with the three

standard Western Electric run rules (two of three consecutive points outside the
� 2-sigma limits; four of five consecutive points beyond the � 1-sigma limits; a run
of eight consecutive points on one side of the centre line), with those of the neural
network.

While the simultaneous tests proposed in Western Electric (1956) improve the
performance of the Shewhart control chart in recognizing moderate changes of the
process mean, they do so at the cost of increases in false out-of-control signals, as
shown by Champ and Woodall (1987). Therefore, in this case, a higher vigilance
parameter (�¼ 0.8575) was adopted to obtain a neural network false alarm rate that
is comparable with the increased Type I error of the benchmark.

The performances of the neural network and those of the Shewhart control chart
with Western Electric run rules are similar in recognizing small shifts of process
mean: �̂�nn ¼ 98:160% and �̂�cc ¼ 98:143%, respectively, with a confidence interval
on the difference equal to [� 0.125%, 0.159%]. On the other hand, the proposed
neural network achieves better performances (lower Type II error rates) than
those of the SPC benchmark in recognizing higher shifts of the mean (0.50, 1.00,
1.50 and 2.00 SD units) as well as of any other disturbance signals.

6.4. Shewhart control chart with Western Electric run rules and sensitizing rules
Table 4 compares Type I and II errors of the Shewhart control chart with seven

run rules with those given by the ART neural network with vigilance parameter
�¼ 0.8610. The run rules implemented in the SPC benchmark are the standard
three tests described in Western Electric (1956) and four additional sensitizing rules
proposed by Nelson (1984). Specifically, six points in a row steadily increasing or
decreasing; 15 points in a row within the � 1-sigma limits; 14 points in a row alter-
nating up and down; and eight points in a row on both sides beyond the � 1-sigma
limits.

Since the use of four additional run rules increases the false alarm rate of the
SPC chart, a higher vigilance parameter (�¼ 0.8610) has been adopted in this case.

From the results of table 4, it is still possible to draw similar conclusions to those
presented for the comparison of the neural network with a control chart with a single
run rule. More specifically, the proposed neural network has better performances
(lower Type II error rates) than those of the SPC chart when recognizing each of the
disturbance signals, for each magnitude level considered in the test (0.25, 0.50, 1.00,
1.50 and 2.00).

6.5. Discussion
Simulation results indicate that the proposed neural network achieves compar-

able performances in signalling a constant shift of the process mean with those of a
CUSUM control chart. At the same time, the neural network appears able to extend
the recognition ability to a wide set of potential unnatural changes of the process
structure that cannot be addressed by a CUSUM chart. Moreover, for other types
of change such as systematic, cycle or mixtures, the neural network outperforms
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Shewhart
WEþ SR RRs

Fuzzy ART
M¼ 75

�¼ 0.8610 Comparison neural network versus control chart

Natural �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
1.671% 1.706% �0.095% 0.035% 0.165%

Systematic variation �̂�cc �̂�nn ð�̂�nn � �̂�ccÞ� �̂�nn � �̂�cc ð�̂�nn � �̂�ccÞþ
0.25 97.985% 97.029% �1.163% �0.956% �0.749%
0.50 96.658% 84.911% �12.467% �11.747% �11.027%
1.00 87.888% 0.016% �88.102% �87.872% �87.642%
1.50 65.761% 0.000% �66.193% �65.761% �65.329%
2.00 32.188% 0.000% �32.652% �32.188% �31.724%

Cyclic �¼ 4
0.25 98.361% 97.724% �0.796% �0.637% �0.478%
0.50 98.394% 95.082% �3.613% �3.312% �3.011%
1.00 97.624% 29.719% �69.334% �67.905% �66.476%
1.50 95.079% 0.026% �95.168% �95.053% �94.938%
2.00 89.784% 0.000% �89.970% �89.784% �89.598%

Shift �¼ 1
0.25 97.660% 96.984% �0.884% �0.676% �0.468%
0.50 95.239% 84.795% �11.158% �10.444% �9.730%
1.00 80.255% 0.050% �80.541% �80.205% �79.869%
1.50 42.546% 0.000% �43.022% �42.546% �42.070%
2.00 8.265% 0.000% �8.521% �8.265% �8.009%

Mixture pc¼ 0.4
0.25 98.121% 97.036% �1.260% �1.085% �0.910%
0.50 97.300% 85.197% �12.715% �12.103% �11.491%
1.00 92.843% 0.022% �92.984% �92.821% �92.658%
1.50 79.948% 0.000% �80.247% �79.948% �79.649%
2.00 53.682% 0.000% �54.136% �53.682% �53.228%

Table 4. Comparison between a neural network and a Shewhart control chart with standard Western Electric (1956) and Nelson (1984) sensitising
run rules (simulation results, 50 sets of 2000 data).
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traditional charting techniques, which are designed to detect these particular
changes, as a Shewhart control chart with a set of run rules and sensitizing rules.

Therefore, simulation results prove that the proposed approach can model dif-
ferent control strategies simultaneously, e.g. those of a CUSUM and of a Shewhart
control chart with run rules, designed to recognize different kinds of change in
the process structure. This means that the proposed approach can be exploited
as the sole tool for signalling a generic modification in the state of the process.
The proposed neural network can be useful when starting processing of new
products, or with a new installed process, for which no prior knowledge of the
unnatural changes are available in advance in order to design a proper control
strategy.

7. Conclusions

This research is concerned with developing a new neural-based approach for
quality control. The application of the ART for quality control has been discussed
and analysed by means of Monte Carlo simulation.

The ART neural approach is mainly intended for signalling unnatural
process behaviour by merely recognizing changes in the state of the process
rather than by detecting specific unnatural patterns. The neural algorithm is quite
simple to implement and the training set can be restricted to a few data vectors.
It has been demonstrated that the training set can even be limited to a single vector
whose components are equal to the process nominal value. Therefore, the first
advantage of the ART-based network that makes it a practical tool for quality
control is the reduced training time. One more advantage of this approach is
that it requires no previous information about unnatural pattern appearances
and related mathematical models. Moreover, a significant benefit of the neural
approach is that it can model multiple control strategies simultaneously. Indeed,
the neural network can be potentially adopted to signal any types of unnatural
pattern, so it provides a powerful diagnostic tool for detecting assignable causes in
real processes.

Simulation has been used for performance measure. From the experimental
results and comparisons, it is fair to conclude that the proposed ART-based control
system is superior to (or in par with) several SPC charts in terms of Type II error
rates. In particular, test comparisons show that the proposed method is a good
control procedure for tackling different kinds of alteration in the process mean.
For example, the neural network possesses superior detection capability against
fluctuations of the process mean (systematic variations, cycles or mixtures) than
the CUSUM test, while it presents a comparable ability in signalling constant
shifts. At the same time, the neural network outperforms Shewhart control charts
with a set of run rules and sensitizing rules in signalling changes such as systematic,
cycle or mixtures.

The proposed method can improve the efficacy of quality control. However, since
the ART-based approach can only signal generic unnatural process behaviours, it
should be stressed that the proposed system cannot substitute existing methodologies
for detecting and classifying predictable unnatural patterns on control charts. It is
a complementary promising tool capable of enhancing the effectiveness of quality
control using neural network when no prior knowledge of the unnatural patterns is
available for training. As an example, the proposed system can be realistically used
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in industrial applications when starting processing of new products, or with a new
installed process.

Finally, there are two main possible directions for future research. First, the
effect of departures from normality and independence for the reference manufactur-
ing process model can be investigated. Second, the neural network system can be
improved in order to recognize not just a generic pattern of unnatural data, but also
one or more particular unnatural patterns.

Appendix A

An analytical method is provided for deciding on the vigilance parameter value.
It is assumed that the quality measurements being monitored are normally distrib-
uted with a common variance and additive error structure: Yt¼Zt� ’, where
Zt�NID(0, 1) and ’ is an arbitrary constant change of the process mean (e.g. a
shift, systematic variation or a mixture pattern). As observed in Section 3, this model
gives a close approximation to many types of practical manufacturing processes. In
situations where these assumptions are violated, a power transformation technique
(Sakia 1992) can be applied to reduce anomalies such as non-normality and the
heteroscedasticity of the monitored quality measurements.

With these assumptions, it can be demonstrated (Pacella and Semeraro 2003) that
given the proposed Fuzzy ART network of window size M, with coding limit l large
enough (e.g. l� 3) and values of the vigilance parameter in the range:
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where the constants �0 and �1 are as in equation (12) (and �(	) is the cumulative
standard normal distribution function)
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the expected Type I and II error rates of the proposed Fuzzy ART algorithm are not
greater than the limits of equations (13) and (14) respectively:

� �
4

9
	

1� �2
0

M 2lð1� �Þ � �0½ �
2

ð13Þ

� �
4

9
	

1þ ’2 � �2
1

M �1 � 2lð1� �Þ½ �
2
: ð14Þ

Given a predefined upper limit for Type I error (say sup�), equation (13) can be
exploited to find an appropriate vigilance. Equation (15) shows the relationship
between � and sup�: given a specific neural network of window size M and coding
limit l, the vigilance parameter of equation (15) can be used to obtain Type I error
rates not greater than the predefined upper limit sup�.
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� ¼ 1�
1

2l

ffiffiffi
2

�

r
þ
2

3
	
1� 2=�

M
ffiffiffiffiffiffiffiffiffiffi
sup�

p

 !
: ð15Þ

To obtain a given � (typically �<1.25%), a practical configuration approach is
to use equation (15) by replacing sup� with ð20=3 	 � 	

ffiffiffiffiffi
M

p
Þ. As an example, referring

to the ART neural network implemented in Section 5 (M¼ 75 and l¼ 3), to obtain
a Type I error rate about equal to �ffi 0.27% and �ffi 1.15%, the criterion of
equation (15) provides the following vigilance parameters:

M ¼ 75

l ¼ 3

� ffi 0:27%

sup� ¼
20

3
	 � 	

ffiffiffiffiffi
M

p
� �

9>>>>>>=
>>>>>>;

) � ¼ 0:8475

M ¼ 75

l ¼ 3

� ffi 1:15%

sup� ¼
20

3
	 � 	

ffiffiffiffiffi
M

p
� �

9>>>>>>=
>>>>>>;

) � ¼ 0:8575

In the cases of unnatural behaviour (e.g. for changes in the process mean of
magnitude |’|¼ 1, 1.5, 2), an upper limit with the Type II error given by the neural
network can be obtained by equation (14):

M ¼ 75

l ¼ 3

� ¼ 0:8475

9>>>=
>>>;

)

�ð’ ¼ 1:0Þ � 5:980%

�ð’ ¼ 1:5Þ � 1:174%

�ð’ ¼ 2:0Þ � 0:455%

8>>><
>>>:

M ¼ 75

l ¼ 3

� ¼ 0:8575

9>>>=
>>>;

)

�ð’ ¼ 1:0Þ � 3:899%

�ð’ ¼ 1:5Þ � 0:982%

�ð’ ¼ 2:0 � 0:409%

8>>><
>>>:

These results can be compared with those obtained from simulation (tables 1–3). In
addition, table 5 reports the results of the designing criterion for several
neural network configurations with M¼ 25, 40, 50, 75, 85 and l¼ 3, 3.5. To validate
the theoretical results, simulation results for the neural network are also included in
table 5.

Appendix B

By combining equations (3) and (6), the neural network does not emit an alarm
if the relationship
disðI t,w�Þ � Mð1� �Þ ,

PM
r¼1 min ðl, Yt�Mþr � �

		 		Þ � 2lMð1� �Þ is verified.
Therefore, if �¼ 0, the network does not release any alarm (Type I error rate
�¼ 0%, and Type II error rate �¼ 100%). On the other hand, when �¼ 1, the
neural network constantly does release alarms (Type I error rate �¼ 100%, Type II
error rate �¼ 0%).

The effects of Type I and II errors when � is altered have been assessed
by means of simulation. The analysis is accomplished at four levels of window
size M¼ 10, 25, 50, 75. Table 6 shows Type I error estimator points (�̂�), and
intervals (with 95% coverage and indicated by the notation [�̂��, �̂�þ]), are both
presented.

From the results in table 6, it appears that as the vigilance parameter
increases, so does the Type I error. Furthermore, as the vigilance parameter
approaches the upper limit �¼ 1, then the Type I error approaches the upper
limit �̂� ¼ 100% at any window size (M). On the other hand, as the vigilance
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parameter decreases, as does the Type I error, and it approaches the lower limit
�̂� ¼ 0% at any window size (M). However, the growing rate presented by the
Type I error as a function of the vigilance parameter increases as the window
size increases. Figure 3(a) shows a chart of point estimator �̂� as a function of

M¼ 10 M¼ 25

� �̂�� �̂� �̂�þ �̂�� �̂� �̂�þ

0.800 0.72% 0.77% 0.82% 0.02% 0.02% 0.03%
0.825 2.59% 2.70% 2.81% 0.32% 0.36% 0.39%
0.850 8.16% 8.38% 8.59% 2.48% 2.61% 2.73%
0.875 23.97% 24.39% 24.81% 16.67% 17.15% 17.64%
0.900 61.01% 61.62% 62.23% 79.05% 79.88% 80.70%
0.925 93.75% 94.11% 94.47% 99.64% 99.74% 99.83%
0.950 99.83% 99.86% 99.89% 100.00% 100.00% 100.00%
0.975 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

M¼ 50 M¼ 75

0.800 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.825 0.02% 0.03% 0.03% 0.00% 0.00% 0.01%
0.850 0.78% 0.84% 0.89% 0.34% 0.38% 0.43%
0.875 12.91% 13.48% 14.05% 11.75% 12.31% 12.88%
0.900 94.22% 94.78% 95.33% 98.83% 99.05% 99.26%
0.925 99.99% 100.00% 100.00% 100.00% 100.00% 100.00%
0.950 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
0.975 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 6. Neural network Type I error point and interval estimators (simulation results,
50 sets of 2000 data).

Neural network design

� ¼ 0:27%, sup
�

¼
20

3
	 � 	

ffiffiffiffiffi
M

p
� �

Simulation results

M l
� ¼ 1�

1

2l

ffiffiffi
2

�

r
þ
2

3
	
1� 2=�

M
ffiffiffiffiffiffiffiffiffiffi
sup�

p

 !
� (%) Confidence interval 95%

25 3.0 0.8218 0.271 [0.240%, 0.302%]
40 3.0 0.8352 0.252 [0.224%, 0.280%]
50 3.0 0.8401 0.275 [0.241%, 0.309%]
75 3.0 0.8475 0.262 [0.229%, 0.295%]
85 3.0 0.8490 0.242 [0.205%, 0.279%]
25 3.5 0.8473 0.281 [0.250%, 0.312%]
40 3.5 0.8588 0.263 [0.232%, 0.294%]
50 3.5 0.8630 0.288 [0.252%, 0.324%]
75 3.5 0.8690 0.260 [0.227%, 0.293%]
85 3.5 0.8705 0.257 [0.219%, 0.295%]

Table 5. Neural network configuration to obtain a theoretical Type I error of about 0.27%.
Simulation results validate the approach.
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vigilance parameter �. The chart area enclosed in the rectangle (i.e. for �
between 0.825 and 0.875, �̂� between 0 and 20%) is shown in detail in

figure 3(b), in which the interval estimators of Type I error rate have been

also included.

The point and interval estimators of Type II errors are presented in table 7.

The Type II errors are estimated on data produced by a process with a shifted

mean. The magnitude of the shift in equation (9) has been fixed to 1 unit SD

(’¼ 1), and the starting point has been fixed to the first observation (�¼ 1). The

notation [�̂��, �̂�þ] has been exploited to indicate the 95% confidence interval of the

Type II error point estimator �̂�.
From the results presented in table 7, it can be deduced that as the vigilance

parameter increases, the Type II error decreases. In particular, the Type II error

approaches the lower limit �̂� ¼ 0% as the vigilance parameter approaches the upper

limit �¼ 1. However, the decreasing trend is smaller for low window size and it is

higher for a high window size.

Figure 4(a) shows a chart of point estimators �̂� as a function of vigilance. The

chart area enclosed in the rectangle (� ranging between 0.825 and 0.875, �̂� ranging

between 0 and 20%) is shown in detail in figure 4(b), in which the interval estimators

of Type II error rate have been included.

Type I error rate% vs Vigilance
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20%

30%

40%

50%

60%

70%

80%

90%

100%

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

M=75 M=50 M=25 M=10

(a)

Figure 3. Neural network Type I point estimators (ordinate) versus vigilance parameter
(abscissa) at four window sizes (simulation results, 50 sets of 2000 data): (a) abscissa
range [0.800, 1.000], ordinate range [0%, 100%]; (b) abscissa range [0.825, 0.875],
ordinate range [0%, 20%] and interval estimators (coverage 95%).
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Type I error rate% vs Vigilance
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(b)

Figure 3. Continued.

M¼ 10 M¼ 25

� �̂�� �̂� �̂�þ �̂�� �̂� �̂�þ

0.800 85.18% 85.49% 85.80% 93.28% 93.53% 93.77%
0.825 67.35% 67.78% 68.21% 71.26% 71.94% 72.61%
0.850 37.16% 37.82% 38.48% 20.68% 21.36% 22.04%
0.875 10.84% 11.21% 11.58% 0.99% 1.18% 1.36%
0.900 1.37% 1.53% 1.68% 0.00% 0.02% 0.04%
0.925 0.06% 0.09% 0.12% 0.00% 0.00% 0.00%
0.950 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.975 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

M¼ 50 M¼ 75

0.800 96.70% 96.86% 97.02% 97.92% 98.06% 98.19%
0.825 70.86% 71.68% 72.49% 67.97% 69.04% 70.11%
0.850 4.96% 5.51% 6.05% 0.83% 1.10% 1.37%
0.875 0.00% 0.03% 0.06% 0.00% 0.00% 0.00%
0.900 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.925 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.950 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.975 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 7. Neural network Type II error point and interval estimators (shift of 1 SD unit
simulation results, 50 sets of 2000 data).
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Type II error rate% vs Vigilance

0%
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(b)

Figure 4. Neural network Type II point estimators (ordinate) for a shift of 1 unit standard
deviation versus vigilance parameter (abscissa) at four window sizes (simulation results, 50
sets of 2000 data): (a) abscissa range [0.800, 1.000], ordinate range [0%, 100%]; (b) abscissa
range [0.825, 0.875], ordinate range [0%,20%] and interval estimators (coverage 95%).

Type II error rate% vs Vigilance
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